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FOREWORD

This final report presents work which was conducted for

Langley Research Center (LaRC) in response to requirements of

Contract NASI-15819. The work presented was performed at

- REMTECH's Huntsville office and is entitled "Wake Flowfields for

Jovian Probe."

The NASA technical coordination for this study was provided

by Dr. James Moss of the Aerothermodynamics Branch of the Space

Systems Division.
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NOMENCLATURE

a Term defined in Equation 11; also, sonic
velocity

A Area

AF Air Force

b Intercept term in far wake shape - see Equation 9

C Elemental concentration

c Specific heat at constant pressure

CEC Chemical Equilibrinm Composition

CESL Chemical Equilibrium Shear Layer "

d Diameter of probe

F Fraction of internal species mixed with external
species (similarity variable)

H Enthalpy

HYVIS Hypersonic viscous shock layer program

m Exponent term in far wake shape - see Equation 9

M Mach number

M Molecular weight

MOC Method of Characteristics

n Term defining two-dimensional or axisymmetric
flow

P Pressure

q Heating rate

r Radial distance from axis of symmetry

R Gas constant; also, Radius of probe
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Re Reynolds number based on freestream conditions_d
and body diameter

T Temperature

u,U Velocity

X Axial distance from aft end of probe shoulder

y Radial distance from axis of symmetry

Y Normal coordinate (see Fig. 3)

y Ratio of specific heats

6 Boundary layer thickness

6" Boundary layer displacement thickness

AY Width of mixing region

e Angle, momentum thickness

Viscosity

p Density

Stream function defined in Equation 12

Subscripts

b Base

c Cone

d Diameter of probe

e Edge of boundary layer

N Neck

r Reference

s Shock, stagnation
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T Total

w Wake, wall

Freestream conditions
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Section 1
INTRODUCTION

The next planetary mission that will encounter aerodynamic

heating is Galileo. After more than a 3-year journey to Jupiter,

the Galileo probe will enter Jupiter's atmosphere with a rela-

tive entry velocity of 48 km/sec, producing the most severe ther-

mal environment ever encountered. In order for the probe to sur-

vive the severe aerothermal entry conditions a large portion of

the probe's weight must be dedicated to the thermal protection

system. Design of the thermal protection system must rely on an-

alytical predictions since the entry thermal environment cannot

be duplicated in any existing ground test facility.

The thrust of the current work is focused on the probe's

wake flowfield. The wake produced by the probe is highly ener-

getic yielding both convective and radiative heating inputs to

the base of the probe. In order to calculate the radiative heat-

ing to the base region of the Jovian probe, the entire wake flow-

field must be defined. This study addresses the development, im-

provement, and use of engineering tools for calculating the

probe's wake flowfield.

The current study is an extension of previous work (Ref. I)



and includes several calculation improvements as well as develop-

ment of flowfields for three cases. The improvements consisted

of developing a shoulder expansion code, calculating the near

wake recirculation zone pressure distribution and improving the

recirculation zone model. Flowfields for three entry conditions

were calculated and include temperature, pressure and elemental

species concentrations. These flowfields extend radially for 2.5

body radii and axially for 7.0 body radii. Section 2 of this re-

port describes the math model used in the calculations. Section

3 provides a description of the results, and this is followed by

conclusions and recommendations in Section 4.



Section 2
WAKE FLOWFIELD MODEL

The objectives of this study required the improvement and

implementation of an engineering model for the Jovian probe wake

flowfield. The basis of the model was developed by Engel in Ref.

I and is shown schematically in Fig. I. The gas state proper-

ties and the component flowfield models are discussed in detail

in the following subsections. The results of applying the models

to three Jovian entry conditions are presented in Section 3.

2.1 Thermodynamics

Equilibrium thermodynamic properties were used throughout

this study. The curve fit coefficients for heat capacity, en-

thalpy and entropy were obtained from Moss (Private communica-

tions from James Moss, NASA Langley Research Center, Hampton,

Virginia) for use in the chemical equilibrium composition (CEC)

program (Ref. 2). Two ranges of thermodynamic property curve

fits were used (1000 K to 6000 K and 6000 K to 16000 K). The CEC

program determines the equilibrium composition of a gas mixture

by minimization of Gibbs free energy.

The three flight cases analyzed during this study are speci-

fied in Table I. Case 4 and 5 are documented in Ref. 3 and Case



3b was obtained from Moss (Private Communications from James

Moss, NASA Langley, Hampton, Virginia). Computer printout from

the HYVIS program (Ref. 3) were obtained for all three cases.

Thermodynamic property output from the Langley HYVIS program were

compared with the use of the CEC program in this study. These

results are shown in Tables 2a, b and c for Cases 3b, 4 and 5

respectively. The temperature, pressure and elemental composi-

tion were specified and all other properties were computed by the

CEC program. The results are for three shock layer conditions

and are in excellent agreement for all variables.

The CEC program was used to calculate thermodynamic property

information for the flowfield math models used in the wake. To

accomplish this several options were used:

RKT - Constant entropy expansion from specified total
conditions

T,P - Specified temperature and pressure
H,P - Specified enthalpy and pressure

Throughout the analysis six species were considered in the invis-

cid flowfield and nineteen species were considered in the viscous

flowfields.

2.2 Shoulder Expansion

In order to determine the initial conditions for the near

wake viscous shear layer, an isentropic stream tube approximation
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was used to calculate the boundary layer flow over the probe

shoulder. The computational area of interest is shown in Fig. 2

and is confined by the body and outer edge of the viscous region

over the probeshoulder.

- The geometric relations used to determine the areas before

and after expansion are shown in Fig. 3. HYVIS output for

all points in the boundary layer are used along the

Y-coordinate. These points are considered as stream tubes and

expanded to locations along the Z-coordinate. The angle, e , isw

the wake angle determined by the method of characteristics (MOC)

solution just downstream of the shoulder. To expand the flow ar-

ound the shoulder the following relations are used:

Known Upstream Known Downstream
Condltlons Condltlons

Yi Z = 0
Pi
Ui from HYVIS

Pi Pi - from MOC

Using continuity we may write:

Ai+ 1 = Ai+ 1 (PU)i+I/(PU)i+1 (I)

To determine velocity the adiabatic perfect gas equation is used.

y---i "--+2 (2)

Where the isentropic perfect gas relation for pressure and densi-

ty is required.

_/P = (_/p) Y (3)
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The area relations from Fig. 3 are used to locate the stream-

lines

Ai+l = _ (2RB+(Yj+l+Yi)cosec)[Yi+l-Yi] (4)

Xi+l . _(2RB+_i+l+_i)[_i+l-_i]/cOS@w (5)

Let _ = RB + r and solve for ri+l

 i+l= (6)

_i+1 = (c°Sew _i+1/_ + _)½ - RB (7)

The key point in the expansion method is that the boundary

layer must be expanded to the pressure defined by the MOC calcu-

lation. The pressure gradient predicted by the MOC near the wall

is quite large as shown in Fig. 4 for the cases analyzed. These

profiles were imposed on the viscous layer and yield realistic

viscous edge conditions after expansion as shown in Fig. 5. The

theoretical edge locations are in reasonable agreement with the

experimental data from Park, (unpublished data from NASA AMES).

However, the ablation rate for the ballistic range test of Park

are unknown and initial flow conditions are different.

2.3 Inviscid Near and Far Wakes

The axisymmetric methods of characteristic (MOC) code of

Ref. 4 as modified in Ref. I was used to calculate the flow

properties of all the inviscid regions shown in Fig. I. The

code operates with entropy and Mach number as independent thermo-

dynamic variables for a constant total enthalpy. The code for



the Jovian probe problem uses thirty velocities at each of the

thirty entropy cuts. The entropy and velocity values were se-

lected for each case considered. The MOC code was modified to

provide a summary print of flow properties along the shock, the

body surface and along any free boundary.

The probe's forebody was modeled as an equivalent cone. The

forebody angle,e , was altered to obtain an approximate match of
c

post shock value with those of the HYVIS output. The forebody

was followed by a short cylindrical section (probe shoulder).

The cylindrical section was followed by a constant pressure free

boundary. The base pressure correlation shown in Fig. 6 from

Ref. I was used to establish the pressure level. The pressure

values for the cases previously studied (Ref. I) along with the

values for the current cases are shown in Fig. 6. The lower

boundary correlation was used to get the neck location within the

neck location bounds developed in Ref. I. These boundaries are:
NeckLocation

X/R = 2.8 ± 0.4 (8)

r/R = 0.4 ± 0.2

Downstream of Neck

r/R = b (X/R)m (9)

m - 0.25 ± 0.05

The preceeding relations were based on thin boundary layer wind

tunnel data. In the current problem a blown boundary layer ex-

ists which significantly alters the effective body geometry.



Consequently, an effective body radius which extends to the outer

streamline of the viscous layer, see Fig. 5, was used to replace

the body radius, R, in Eq. 8 and 9. This permitted obtaining

consistent neck locations from Eq. 8 and 9 and from the MOC

using the pressure correlation.

The far field inviscid wake started with initial conditions

from the near wake calculation along the vertical dashed line

Shown in Fig. I. The MOC treated the far viscous wake as a

solid boundary defined by Eq. 9. The wake shock was calculated

as part of the overall MOC solution. Calculations were made from

the wake neck to X/R = 7.

The results from the MOC calculation are put on tape and are

arranged along characteristic lines in cylindrical coordinates.

A program was written to arrange the data in uniform radial in-

crements at specified axial values. This program called JUGGLE

also permits translation of coordinates from those used by the

MOC to those desired for final data usage. The JUGGLE program

was used on both the near and far inviscid wakes.

2.4 Viscous Near and Far Wakes

The near and far viscous wakes were calculated using a modi-

fied form of the computer program documented in Ref. 6. The

8



basic features of the program and its current application are

described below.

The conservation equations for two dimensional or axisymme-

tric viscous mixing flow were written in terms of stream func-

- tions. An explicit finite diffrence equation was constructed for

the axial momentum equation to evaluate velocity. The axial mom-

entum equation is:

_u 1 d_p_+ 1 3 (_u)dx a (10)

where a =lapuy2n/_ n (11)

and t_ns_/3y = puy n (12)

The term n is 0 for two-dimensional flow and I for axisym-

metric flow. The resultant velocity values are applied in a sim-

ilarity procedure to determine the degree of mixing. The degree

of mixing is calculated using

U -U
F ffie (13)

Ue - Ur

In the current application, F represents the fraction of abla-

" tion products mixed with the external _ and He species and the

nondimensional static enthalpy level. The similarity approxima-

tion can be assessed in terms of the HYVIS output at aft end of

the forebody conical section (station 17). Results for the three



cases analyzed are shown in Fig. 7 and indicate that the simi-

larity approximation provides a reasonable set of initial condi-

tions for the viscous near wake.

The temperature of the mixed composition is then determined

under the restraint of chemical equilibrium conditions. The vel-

ocity, temperature and other properties are located in the physi-

cal plane by an inverse transformation from the stream function

plane.

The eddy viscosity model used in this study is a

Prandtl-like model for compressible flow:

(AY+_*inltial)I (PU)max (PU)minI+ i0-_ (14)9OO

Other models were examined but were found to yield more rapid

spreading than the observed viscous wake boundaries would indi-

cate is realistic or no significant difference from the preceed-

ing model.

The chemical equilibrium shear layer (CESL) program was used

to calculate the near wake and far wake viscous areas. Both near

and far wake calculations required special handling as described

below.
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The initial conditions for the near viscous wake was provid-

ed by the shoulder expansion code described in Subsection 2.2.

The key concept used in obtaining a realistic expansion of the

viscous layer was to superimpose the pressures determined from

the MOC calculation. This same concept was extended to the outer

portion of the viscous near wake as schematically shown in Fig.

2. An example of the pressure profiles derived from MOC calcula-

tions for Case 3b is shown in Fig. 8. The outer edge of the

shear layer is also shown in Fig. 8 and illustrates the extent

to which the viscous layer is modified by the imposed MOC pres-

sure field.

The second important concept used in developing the near

viscous wake was specifying the outer wake streamline location.

This method eliminates the need to transform two dimensional so-

lutions as done by Balakrishnan and Chu (Ref. 7). It properly

accounts for the axisymmetric convergence of the flow. Further,

the recompression pressure in the near wake is calculated as part

of the solution. This type of approach is necessary since the

shear layer is not thin compared to any dimension of the body or

wake. In order to specify its physical location in the inner re-

gion, pressure must rise to accommodate the area being restrict-

ed. Thus, an axially varying constant-radial-pressure distribu-

tion is calculated. A forward integration from shoulder to wake

neck region is made and a neck pressure is calculated. This

iI



pressure is compared with the MOC predicted pressure. If they

are not equal, the neck radius is changed and a new integration

is begun.

Experimental and theoretical pressure distributions for tur-

bulent wakes were examined to verify the expected trends. Figure

9 from Ref. 8 shows the pressure distribution for a

two-dimensional case. Note that there is no constant pressure

region in the data. Figures 10 and 11 from Ref. 9 show pressure

distributions for axisymmetric turbulent wakes. Figure 10 is a

comparison of experimental and theoretical pressures along the

axis of symmetry. Both theory and data are for a cylindrical

forebody. Peak pressure on these graphs and the wake neck occur

at the same axial location. The theoretical results given in

Fig. 11 indicate that a thick initial boundary layer

thickness, _I, yields a very short constant pressure region.

In the present problem we have both a large _I and a high

expansion angle. The expansion angle is twice that of Fig. 9.

Thus, no significant constant pressure region is expected. The

results shown in Section 3 from the current model appear consis-

tent with the available data and expected trends.

The far wake calculations were made with an axial pressure

and corresponding edge condition variation predicted by the MOC

12



results. These calculations were made with axisymmetric equa-

tions without boundary location constraints. Initial conditions

for the far wake were taken directly from the near wake neck lo-

cation results.

2.5 Recirculation Zone

Defining the recirculation zone properties for the Jovian

probe presents a rather unique base flow problem. Several as-

pects of this problem make it unique. First, very little experi-

mental work has been done on turbulent wakes of large angle

cones. Secondly, most experimental and theoretical wake studies

have been done on thin boundary layers and not blown boundary la-

yers as exhibited by the Jovian probe. Thirdly, few studies have

addressed determining the recirculation zone enthalpy level.

Fourth, high Mach number data for turbulent wakes are scarce.

Finally, finding information on axisymmetric turbulent wakes

which contain more than one of these aspects is rare.

In order to determine the enthalpy and concentration levels

in the recirculation zones a physical and resulting math model

must be adopted. Figure 12 provides schematics for five physical

models examined during the course of this study. Model I has a

closed dividing streamline and is the model usually found in the

literature. The model assumes steady state flow with the mass in

13



the recirculation zone constant. Problems were found with using

Model I for the current work. First, since the mass in the re-

circulation zone cannot be exchanged with the external shear

layer, cannot be determined. Secondly, if a steady state energy

balance is made at the boundaries of the zone in Model I, unreal-

istic results are obtained. If the body is assumed adiabatic,

the recirculation zone total enthalpy is the freestream total en-

thalpy. This implies that the forebody massive ablation provides

no protection to the base. If the body is nonadiabatic then the

energy transferred across the dividing streamline is transferred

to the body. Using this assumption the enthalpy level cannot be

determined. Based on the foregoing reasons Model I was rejected.

Models 2 and 3 are similar in that one end of the dividing

streamline is open to mass flow and steady flow is assumed.

Since Model 2 would lead to an accumulation of mass and Model 3 a

depletion of mass within the recirculation zone, both models were

rejected.

Model 4 assumes steady flow and an open recirculation zone

in which some mass from the boundary layer is captured and the

same amount is allowed to exit at the wake neck. The recircula-

tion zone is like a stirred reactor with a constant mass input

and output. The mechanisms which would allow both a capturing

and escape of mass could not be identified from the literature.

14



If this process is real, a capturing model for flow over the

shoulder would require development.

The literature on separated and wake flows by Chilcott (Ref.

10) and Charwat et. al. (Ref. 11) suggest that a pulsating

mass exchange process exists and the degree to which this behavi-

or dominates is geometry dependent. Using this concept, Model 5

was developed. The dividing streamline is closed at the shoulder

and periodically open at the wake neck. The opening process

loses mass and the closing process pumps mass into the recircula-

tion zone. Charwat et. al. (Ref. 11) points out that even for

cavity type flows neither the "conduction" model, corresponding

to Model I, nor the mass exchange modelare sufficiently Com-

plete. In the current problem, effects of Model I, 4 and 5 are

thought to contribute to the recirculation zone properties. The

conduction across the dividing streamline, and the mass exchange

mechanisms of Models 4 and 5 determine the recirculation zone en-

thalpy. The mass exchange mechanisms of Models 4 and/or 5 deter-

mine the elemental composition within the recirculation zone.

Since development of a steady state model based on global

energy and mass balances do not appear feasible and correct, an

empirical approach was taken. Experimental data exist for the

recirculation zone temperatures of nonablating bodies. Huber and

Hunt (Ref. 12) compiled data to compare with the Apollo shape.

15



These data are shown in Fig. 13 where temperature was replaced

by enthalpy. Turbulent flow data corresponding to Re d _ I0 s for

the Apollo shape was selected to best represent the Jovian probe.

Wall enthalpy does not Bsignificantly influence the recirculation

zone enthalpy since HwlHT=0.030 to 0.039 for the cases analyzed.

A value of (Hb-Hw)I(HT-Hw) = 0.5 was selected as a conservative

estimate for the design application herein. An improved estimate

and model awaits test data for hypersonic blunt cones with mas-

sive forebody blowing.

16



Section 3
RESULTS

This section presents observations about the three wake

flowfields calculated and presents the format in which the flow-

fields were recorded for radiation analysis work.

3.1Flowfield Distributions

The analytical methods described in Section 2.0 were used to

calculate three flowfields corresponding to three possible Jovian

probe entry conditions. The specifying conditions for the three

cases are given in Table I. Case 3b corresponds to peak forebody

heating for a cool atmosphere model with a steep entry angle.

Cases 4 and 5 are for a nominal atmosphere model and nominal

entry angle (Ref. 3). Case 4 corresponds to peak forebody heat-

ing in the nominal entry trajectory.

The starting location for the current flowfields is where

the HYVIS program terminates at the end of the Jovian probe coni-

cal section (Station iF). It is therefore appropriate to compare

the MOC solution on the conical section with the HYVIS results.

MOC results are for a sharp cone whereas the HYVIS results are

for a sphere-cone body. Post shock results are given in Table 3

and are found to be in good agreement. The body angle used in

17



the MOC calculation was larger than the actual body angle to ac-

count for effective body displacement due to massive blowing.

The post shock conditions shown in Table 3 are indicative of

the relative temperature and pressure levels in the respective

wakes. This point will become apparent as the results given in

this section are reviewed. The post shock conditions for the

forebody shock past the probe's shoulder are shown in Fig. 14.

Case 3b exhibits the highest temperatures whereas Case 5 exhibits

the lowest temperatures. This same trend persists throughout the

near and far wake inviscid flowfields as summzrized in Fig. 15.

Post wake shock conditions may be significant for Case 3b but ap-

pear somewhat benign for Case 5.

Streamline pressures and temperatures for the viscous near

and far wakes are shown in Figs. 16 to 21. The external and

internal viscous streamline pressures, shown in Figs. 16, 18 and

20, converge at X/R _ 0.5. Between X/R = 0 and 0.5 large radial

pressure gradients exist in the shear layer as shown in Fig. 8.

This high pressure and pressure gradient region produces the high

temperature levels shown in Figs. 17, 19, and 21. The models

used in the previous work (Ref. I) did not account for this

pressure effect and thus did not identify this high temperature

region. The rise in temperature at the neck location is a result

of the wake shock. Figures 17, 19, and 21 also show the recircu-

18



lation region temperature levels. The slight rise with increas-

ing XIR is due to the axial pressure rise in the recirculation

zone which matches the inner streamline pressure.

Near wake radial profiles for the peak forebody heating con-

. ditions of two trajectories are shown in Fig. 22. Pressure lev-

els and temperature levels in the recirculation region, viscous

layer and inviscid region are higher for Case 3b than for Case 4.

Mass fraction levels of carbon in the recirculation and viscous

layers are comparable for the two cases.

The nondimensional pressure distributions in the near w,ake

calculated using the model described in Section 2.3 are shown in

Fig. 23. The effect of massive blowing increases the boundary

layer thickness and nearly eliminates the plateau pressure region

in the near wake. This trend has been illustrated for less sev-

ere cases by Ref. 9 as shown in Fig. 11. The base pressure is

increased but only slightly by increased ablation. The calculat-

ed neck pressure for the three cases is between 2.5 and 3.3 times

the base pressure. This agrees with the data and theory of Fig.

10 and data and theoretical results presented by Wong and Chow in

Ref. 21. However, the current results are significantly differ-

ent from those presented by Park (Ref. 22).

Park in Refo 22 assumed a base flow model like Model I of

19



Fig. 12 to establish the neck pressure. A dividing streamline

velocity of 50 percent of the external velocity was assumed to

stagnate and close the recirculation zone. This leads to the

high neck pressures presented in Ref. 22. No explanation of how

the recirculation mass fraction or enthalpy level can be estimat-

ed using the closed recirculation zone concept was given. Park

estimated the neck to stagnation pressure ratio PN/Ps = 0.15 for

Case 4 of this report. This may be compared to the current re-

sults in Table 4. By using base heating rate correlation of Ref.

22 with the current neck pressures, the base radiative heating

was estimated to be 0.925 MW/m 2 compared to the value of 19.4

MW/m2from Ref. 22. The actual value for Case 4 from the current

analysis must await the detailed radiative calcualtions for the

flowfield provided by this work. However, by using the correla-

tion of Park the current results would appear to yield heating

rates lower by a factor of 20 than results of Park's and higher

by a factor of about 3 than the results from Brant and Nestler

(Ref. 5).

The main uncertainty and differences between different ana-

lysis is the manner in which the recirculation region is closed.

This produces different models for the recirculation zone species

and enthalpy level as well as different wake neck pressure lev-

els. All of these factors significantly affect the base heating

environment. This uncertainty will most likely persist until an

2O



experimental data base is available for blunt planetary probe

class bodies and entry conditions.

3.2 Flowfield Format

The _lowfie%d results for all three cases were delivered to

NASA-Langley on cards. The flowfield properties were provided in

nondimensional cylindrical coordinates starting at the aft end of

the probes shoulder and going to XIR = 7.0. The card format is

defined in Table 5. The flowfield for each case consists of ap-

proximately 1300 points where temperature, pressure and elemental

composition is defined.
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Section 4
CONCLUSIONS AND RECOMMENDATIONS

Based on the analysis and results of this study, the follow-

. ing conclusions are drawn.

(I) Case 3b exhibited the highest wake temperatures
and Case 5 the lowest wake temperatures.

(2) The neck pressure was calculated to be
approximately 3 times the base pressure.

(3) The current pressure model for the outer
portion of the shear layer produces a high
temperature region in the shear layer for
X/R _ 0.5.

(4) The reoirculation zone enthalpy can be only
approximated using current models and
experimental data.

(5) Large differences exist in the neck pressures
used by different options to model the Jovian
probe wake.

As a consequence of the information obtained in this study,

the following recommendation is made.

An experimental program, for general planetary probe
application, should be undertaken to establish:

(a) The pressure distribution in the near wake both
with and without massive blowing.

(b) The elemental composition in the recirculation
_ zone as a function of blowing rate.

(c) The recirculation zone enthalpy as a function of
blowing rate and mass injection enthalpy ratio to
total enthalpy.
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Table1

SPECIFYINGCONDITIONS

Variable Case 3b Case4 Case5

Time (sec) 85.25 Ill.3 I13.5

Altitude (km) 93.346 126.05 I15.31

AtmosphereMass Fractions

H2 .641 .803 .803
He .359 .197 .197

P_ (atm) .004429 .002422 .003795

T_ (°K) 132.07 152.00 148.0

M_ 46.975 43.009 38.45

V_ (m/sec) 37547 39284 34666
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Table 2a

Case 3b

COMPARISONOFEQUILIBRIUMTHERMODYNAMICCALCULATIONS

CondltIQn I Condition 2 Condition 3
Vari able REMTECHLangley REMTECHLangley REMTECHLangley

P atm 12.651 12.651 7.1249 7.1249 7.436 7.436

T K 17125 17125 12999 12999 3978 3978

H cal/gm 166386. 166322. 94742 94716 5417.9 5423.9

Mol wt I.I18 I.I18 I.307 I.307 30.824 30.787 -

Cp cal/gmK 26.2726 12.7979 2.1459

y 1.2215 1.2480 1.1076

am/sec 12474.3 I0158.7 lOg0.1

MoleFractions

H .52184 .52199 .77931 .77949 .I0850 .I0904

H2 .00003 .00003 .O0010 .00009 .03768 .03768
+
H .18890 .18890 .05168 .05169

He .I00_6 .09999 .I1723 .11704 .01757 ,01752
+

He .00009 .00009 ......

e- .18899 .18899 .05168 .05169

C .00788 .00797

C2 .01026 .01035

C3 .17830 .17900

C2H .12088 .12101

C2H2 .02347 .02337

CsH .14328 .14295

CwH .23732 .23634

CO .l1486 .I1474

Condition

l - PostShock(StagnationPoint)

2 - PostShock(Station17) I3 - Wall (Station17) . At aft end of forebodyconicalsection
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Table 2b

Case 4

COMPARISONOFEQUILIBRIUMTHERMODYNAMICCALCULATIONS

Condition 1 Condition 2 Condition 3

Variable REMTECHLangley REMTECH Langley REMTECH Langley

P atm 6.008 6.008 3.356 3.356 3.469 3,469

T °K 15742 15742 11822 11822 3878 3878

H cal/gm 182219.8 182150.0 102858.3 102838.9 5510.9 5506.5

Mol wt 0.972 0.972 1.137 1.137 29.986 30.009

Cpcal/gmK 32.7970 13.3459 2.4762
y 1.2105 1.2560 1.1071

a m/sec 12767.6 I0421.4 1091.O

Mole Fractions

H 0.59623 .59845 0.86674 .86683 0.13143 .13097

H2 0.00002 .00002 0.00009 .00009 0.03700 .03703

H+ 0.17794 .17792 0.03860 .03861

He 0.04783 .04776 0.05596 .05587 0.00742 .00743

He+ 0.00002 .00002

e- 0.17796 .17794 0.03860 .03861

C 0.00968 .00960

C2 0.01156 .Oil50

C_ 0.20350 .20291

C2H 0.]2161 .12157

C2H2 0.01922 .01930

C3H 0.13837 .13863

C_H 0.20833 .20905

CO 0.II187 .71199

Condition

l - Post Shock (StagnationPoint)
2 Post Shock (Station17)
3 - Wall (Station17)
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Table2c

Case5

COMPARISONOF EQUILIBRIUMTHERMODYNAMICCALCULATIONS

Conditionl Condition2 Condition3

Variable

REMTECH Langley REMTECH Langley REMTECH Langley

P atm 7.447 7.447 4.105 4.105 4.228 4.228

T °K 14475 14475 8839 8839 3765 3765 -

H cal/gm 141561.3 141531.I77711.9 77700.0 5498.5 5503.9

Mol wt 1.059 1.059 1.180 1.180 23.600 23.579

Cp cal/gmK 22.929 5.2033 2.4672

y 1.2187 1.5199 I.I163

a m/sec I1766.9 9729.8 1216.9

Mole Fractions

H .73960 .73967 .93601 .93611 .18329 .18400

H2 .00006 .00006 .00061 .00061 .13453 .13427

H+ .10410 .10411 .00265 .00265

He .05214 .05205 .05809 .05799 .03299 .03291

He+

e- .10410 .10411 .00265 .00265

C .00396 .00399

C2 .00412 .00416

C3 .07108 .07146

C2H .12677 .12690

C2H2 .05255 .05229

C3H .13260 .13242

C.H .17211 .17165 -

CO .08599 .08593

Condition l - PostShock(StagnationPoint)
2 - PostShock(Station17)
3 - Wall (Station17)
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Table3

COMPARISONOF CONESECTIONPOST-SHOCKCONDITIONS

Case3b Case4 Case 5

Variable Units REMTECH LANGLEY REMTECH LANGLEY REMTECH LANGLEY
Sta.17 Sta.17 Sta. 17

T K 13,044 12,999 II,908 II,822 8994 8839

P atm 7.241 7.125 3.432 3.356 4.213 4.105

Avg.Mol. --- 1.306 1.3074 1.1345 1.137 1.179 1.180
Weight

es-ec deg. 3.91 4.18 3.733 3.88 3.47 2.902

(Blowing)

ec deg. 46 45 46 45 45.4 45
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Table 4

BASEPRESSURESSUMMARYAND BASERADIATIVEHEATINGESTIMATES

Case Ps PN PN/Ps PN/Pb qb/qs (_ (_I
(atm) Catm) (1) (MW/m2) (MW/m2)

3b 12.651 .2721 .0215 3.32 .00757 451.9 3.42
4 6.008 .0964 .0160 2.52 .00488 189.5 0.925
5 7.447 .1278 .0168 2.59 .00520 166.3 0.605

Notes(1) qb/qs= 2.4 (PN/Ps)LsfromPark (Ref.22)

(2) qs = stagnationcoupledablationradiativeheatingfromHYVIS

(3) qb = baseradiativeestimateusing(1)and (2)

Table5

CARDFORMAT
| i i ...

Column Format Variable

l - lO FIO.6 X/R,nondimensionalaxialdistance
II - 20 FlO.6 r/R,nondimensionalradialdistance -
21 - 30 FlO.4 Statictemperature(°K)
31 - 40 FlO.8 Staticpressure(atm)
41- 60 FlO.7 Massfractionof hydrogen
51 - 60 FIO.7 Massfractionof helium
61 - 70 FlO.7 Massfractionof carbon
71 - 80 FIO.7 Massfractionof oxygen

30



RECIRCULATION
/
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Cone FrustumAreas

Ai+1 = _ ((ri+l+RB) + (ri+RB))[Yi+1-_]

Ai+l= _ ((_i+I+RB)+ (ri+RB))[Zi+l-Zi]

r = Y cosBc

= Z cosew

Therefore

- Ai+1 = _ (2RB+(Yi+l+Yi)cOSec)[Yi+l-Yi]

Ai+l = _ (2RB+ri+1+ri)[ri+l-ri]/c°SOw

Fig.3 ShoulderExpansionGeometry
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Fig.13 Comparisonof ReynoldsNumberDependenceon Near-Wake
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